Effect of Transcranial Direct Current Bi-Hemispheric Stimulation on Fine Motor Activity of the Hand in Healthy Adults

Naveen Kumar Balne¹, Bestha Vinitha², S. Afshan Jabeen³, Lakshmana Prasad G⁴, Sireesha Yareeda⁴

²Postgraduate student, Department of Physiotherapy, Nizam's Institute of Medical Sciences, Hyderabad, India ^{1,4}Department of Physiotherapy, Nizam's Institute of Medical Sciences, Hyderabad, India ³Department of Neurology, Nizam's Institute of Medical Sciences, Hyderabad, India

Corresponding Author: Bestha Vinitha

DOI: https://doi.org/10.52403/gijhsr.20230412

ABSTRACT

Background: Evidence states that transcranial direct current stimulation (tDCS) can alter cortical excitability (Cathodal stimulation hyperpolarizes, while anodal stimulation excites). This study compares bihemispheric tDCS to sham stimulation on fine motor activity in healthy adults.

Methods: 24 healthy 18-30-year subjects were recruited at Nizam's Institute of Medical Sciences in Hyderabad, India, and split into experimental (tDCS bihemispheric stimulation) and control (sham) groups. The O'Connor Finger Dexterity Test (OCFDT) and Purdue Pegboard Test (PPBT) results were analysed for hand dexterity before and after stimulation.

Results: Variables like age, height, weight, and BMI of the groups were taken. Significance of differences in Intra- and inter-group hand function dexterity tests (OCFDT, PPBT) test results were done, and a p-value of <0.05 was considered significant.

Conclusion: The study found significant intrapost-differences group pre and in all components of OCFDT and assembly PPBT. components of but inter-group differences in other components of PPBT and OCFDT were insignificant. Results found were limited as tDCS can only stimulate the superficial cortex. In addition, the results in the sham group attributed to some amount of superficial stimulation in sham stimulation. Further research is needed to know the extent of stimulation effects and training effects to understand cortical activity differences in bihemispheric and sham stimulation, initial cognitive competence, motor planning, task practice, fine motor function feedback, intensity, electrode size, duration, number of sessions, stimulation site on tDCS effects.

Keywords: Hand function, tDCS, Sham stimulation, Bi-hemispheric stimulation, Transcranial direct current stimulation,

INTRODUCTION

Hand function training following neurological deficit is one of the challenging areas in physiotherapy. The central and peripheral neural systems initiate and regulate the motor activities of skeletal muscles. The human hand is essential in daily functioning and recreational activities. Hand function is broadly categorized into gross and fine motor activities^{1,2}. Fine motor activity encompasses the complex coordination of the hand's small muscles, bones, and nerves to execute precise movements. In contrast, gross motor skill relates to broader actions such as arm waving. The M1 (Primary motor area region) is thought to be responsible for manual skill learning and voluntary movements of the hand, particularly fine motor activities³,⁴. There are various methods to enhance hand function, such as repetition of tasks, variability in task training, modification of practice methods, surface EMG feedback, and virtual reality.

These methods influence motor learning and skill development, indirectly influencing the The central systems. cognitive. psychological, and non-physical elements affect fine motor function⁵. The regular practice of motor tasks results in an improvement in the efficiency and learning of movements. The time needed to acquire new skills might vary based on the specific work, ranging from a few days to several weeks or months of focused training⁶. Only some authors have recently published studies on transcranial direct current stimulation and its application on hand function improvement by direct stimulation of brain areas.

Transcranial direct current stimulation noninvasive (tDCS) is а technique employed for neurological stimulation and change the physiological rhythms of neurons, specifically to modify cortical excitability within the brain by delivery of low-amplitude (0-4mA)electrical stimulation through surface scalp electrode^{7,8,9}. There are two types of stimulation, i.e., anodal and cathodal Anodal stimulation causes stimulation. excitation and cathodal stimulation causes hyperpolarisation¹⁰. The accurate positioning of electrodes determines the symmetry and distribution of electrical currents and influences the success rate of the therapeutic intervention. It can produce long-lasting and polarity-specific changes in the excitability of the motor $cortex^{11}$. Depending on the current flow, it can increase or decrease neuronal excitability by either membrane depolarization or hyperpolarization¹².

Excitability of the hemispheres occurs based on the stimulation provided to it. Few studies favor applying cathodal or anodal tDCS stimulation on healthy individuals for hand function; these results are used in therapeutic interventions. Studies on Bi-Hemispheric stimulation and its effect on the fine motor activity of the hand in healthy individuals will further help the professionals and fill the lacuna to select a suitable strategy for improving the fine motor activity of the hand following neurological lesions. Studies mentioned using unilateral, sham, anodal, or cathodal stimulation methods. However, they still need further clarity on hand functional skill development by direct bi-hemispheric stimulation. The purpose of the study is to assess the effects of Transcranial direct current stimulation on the fine motor activity of the hand in healthy adults using bi-hemispheric stimulation and compare the results with sham stimulation.

METHODS

The study was conducted at Nizam's Institute of Medical Sciences, Hyderabad, and Telangana, India. After obtaining ethical clearance and written informed consent, 24 samples, aged between 18 to 30 years healthy individuals, were taken into the study. Subjects with a history of seizers, accidents, sensory impairments, visual field defects, subjects on psychiatry medication, elbow flexion, and hand function deficit because of any other clinical and nonclinical reasons, which affect hand function and Dermatitis, and any metal near the zone of treatment were excluded. Subjects were randomized into two groups, i.e., Group 1: Experimental = tDCS (Bi-hemispheric stimulation) and Group 2: Control = sham **Bi-hemispheric** stimulation. Subjects' demographic data was taken. Motor activity of Hand (Manual dexterity) evaluation was done using the O'Connor finger dexterity test and Purdue Pegboard test at the study's beginning and after the stimulation application for two weeks.

tDCS - Bi-hemispheric stimulation method: Subjects are seated in a comfortable chair with head and armrests. Sponge electrodes soaked in isotonic sodium chloride solution were placed under the anode and cathode. Electrodes secured on the scalp region with a strap. The anode electrode is placed over the primary motor cortex on the left hemisphere primary motor area (Left M1; C3 or C4, according to EEG 10/20 system), and the cathode is placed over the Primary motor cortex on the right hemisphere (Right

M1; C3 or C4, according to EEG 10/20 system). 2mA for 20 min current applied on both areas for anode to cause excitability and cathode to cause inhibition, five times a week for two consecutive weeks

Figure 1: tDCS application

tDCS - sham stimulation method: During TDCS, the sham stimulation method, subjects were positioned, and electrodes were placed in a similar bi-hemispheric stimulation. However, the TDCS current delivery turned off after 30 seconds. Subjects experienced a brief tingling sensation under the electrode for 30 seconds after being turned on, so there was no difference in initial sensory experience in either group.

Perdue pegboard test (PPBT) is a psychomotor test of manual dexterity and bimanual coordination. The examination covers two skills: fine motor dexterity, commonly known as "fingerprint" dexterity, and gross motions of the arms, hands, and fingers. The Purdue Pegboard is a rectangular board with two sets of twentyfive vertically aligned holes and four concave containers at the top with three types of small pegs placed in it. Subjects were advised to Remove the pegs and place them vertically in the holes as rapidly as possible, as many as possible, with right (Rt) hand and left (Lt) hand within 30 seconds. Next, assembled pins (combined pins, washers, and collars) were placed in the vertical rows using both hands. Pegs inserted in 30 seconds are counted and graded(13)(Figure 2: Perdue pegboard test (PPBT) a: left b: right c: both d: assembly).

Figure 2: Perdue pegboard test (PPBT) a: left b: right c: both d: assembly

O'Connor Finger Dexterity Test (OCFDT) evaluates fine motor skills. The subject was seated comfortably at a table measuring approximately 30 inches tall. Place the test (pins in the well) before the subject. The board has 100 holes, each of which can accommodate three pins. Subjects were instructed to insert three pins into each hole as quickly as possible by picking up three at a time with a single hand. Please. The subject starts from the farthest corner from them and moves left to right only when using the left hand and right to left when using the right hand. Before going to the next row, each row is filled. Enough pins are provided on the board so that they have enough, even if they drop one or two on the ground without any pause to get them. The subject starts at the command of the therapist, "BEGIN, " and continues until the entire board is filled. The subject's performance in terms of time required to fill the board was measured in seconds using a stopwatch. Time documented for first fifty holes and the second fifty¹⁴

Figure 3: O'Connor Finger Dexterity Test (OCFDT)

RESULTS

The data were analysed using IBM SPSS version 25. All the continuous variables are presented as mean \pm standard deviation and percentages, respectively. The inter-group comparison of the continuous variables age,

height, weight, and BMI was done using an unpaired t-test. The intra-group comparison for the pre-post values of the Perdue pegboard and O'Conner finger dexterity test was done using a paired t-test.

Test Side Variables			Experimental mean±sd	P value	Sham mean±sd	P value	
			_				
OCFDT	Right	Right 1st half	Pre	227.63±31.39	0.01	211.43±18.31	0.001
			Post	216.2±28.62		204.52±21.64	
		Right 2nd half	Pre	222.8±28.93	0.003	214.06±22.12	0.05
			Post	211.58±26.94		208.23±23.33	
		Right raw score	Pre	236.36±31.28	0.01	223.45±20.76	0.005
			Post	224.47±28.4		216.79±23.49	
	Left	Left 1st half	Pre	255.01±29.47	0.001	235.24±19.48	0.001
			Post	244.55±25.18		226.15±21.07	
		Left 2nd half	Pre	248.54±25.52	0.024	239.05±20.84	0.01
			Post	243.45±23.04		228.82±19.48	
		Left raw score	Pre	$375.54{\pm}40.5$	0.001	351.35±30.05	0.01
			Post	36.83±35.83		338.82±30.83	

Table 1:Intra-group comparison within the two groups for OCFDT

Table 2: Intra-group comparison within the two groups for PPBT

Table 2. Intra-group comparison within the two groups for 11 bi									
Test		Experimental mean±sd	P value	Sham mean±sd	P value				
Assembly	Pre	44.67±7.50	0.007	46.53±6.84	0.036				
PPBT	Post	45.91±7.49	0.007	47.63±6.98	0.050				
Both PPBT	Pre	30.75±2.58	0.116	29.33±2.86	0.01				
DOUI PPD I	Post	31.12±2.57	0.110	30.43±2.65					
Sum PPBT	Pre	68.92±5.27	0.119	66.67±5.58	0.342				
Sum PPB I	Post	68.66±5.17	0.119	67.54±5.24	0.342				

The inter-group comparison for pre - and post-values of the Perdue pegboard and O'Conner finger dexterity test was done using an unpaired t-test. A p-value of <0.05 was considered significant for all analyses. (Sig = significant; NS = Not significant). To study the effect of transcranial direct current, 24 subjects were randomised into experimental (n=12, 8 Female, 4 Male) and sham groups (n=12, 8 Female, 4 Male). Both groups are homogenous; the range of age in both groups is between 20 and 25 years, height 152 to 172 cm, and BMI 19 to 24. The differences between pre and posttest scores of all components of OCFDT group showed statistical within the significance in control and experimental groups (p=<0.05), whereas between-group differences were insignificant. Within group pre and post-Assembly task results on PPBT in control and experimental groups were statistically significant (p = < 0.05), whereas between-group differences of all components of PPBT were insignificant.

DISCUSSION AND CONCLUSION

According to the literature, tDCS applied over the motor cortex (M1) affects motor learning¹⁵. Transcranial Direct Current stimulation (tDCS) has many significant benefits compared to alternative noninvasive brain stimulation treatments. These include its inherent user-friendly characteristics, use of large electrodes, incorporation of a sham mode, and its portable nature ¹⁶. During stimulation, a few subjects experienced minimal discomfort and a tingling sensation, mild itching, and erythema; however, these symptoms are typically of a mild form and are transient in duration¹⁷. However, inter-individual variation in conductivity may alter the passage of electrical currents. Possible processes behind the effects of cathodal and anodal stimulation on brain cell membrane function include changes in local ionic modifications concentrations. to transmembrane proteins, and changes in hydrogen ion concentration resulting from electrolysis¹⁸. The extended duration of motor learning results associated with bi-

hemispheric transcranial direct current stimulation (tDCS)¹⁹,²⁰. The transmembrane potential of neurons can be altered by applying current, which affects the level of excitability²¹,²². According to existing knowledge, it is believed that transcranial direct current stimulation (tDCS) enhances the the expression of brain-derived gene $(BDNF)^{23},^{24},$ neurotrophic factor which subsequently affects the induction of NMDAR-dependent long-term potentiation (LTP), which helps in the promotion of neural function. As several areas of the brain also impact motor skills and coordination, our study mainly focused on the primary motor area(M1) which might have had a minimal effect on the subject's fine motor function based on accuracy and speed. Sara et al. 2020 found that bihemispheric tDCS is better than Uni-tDCS in improving motor learning. Doyon et al. 2009 stated that early learning primarily involves M1, whereas early consolidation heavily relies on the striatum; tDCS cannot reach that deep to work on the striatum²⁵.

PPBT test is considered a measure of manual dexterity and bimanual coordination components of finger dexterity; assembly component results within groups may be attributed to the effects of tDCS. On the OCFDT other hand, results differed significantly within the group rather than between the groups. Comparable results were obtained in control and experimental groups, possibly because training effects superimposed on Bi hemispheric tDCS. The Sham group showed results similar to those of the experimental group. The study duration was only five days a week, two weeks, and 20 minutes in a session in the group. experimental Initially, sham treatment with similar electrode placement with 30 sec on time contributed to some level of excitability and motor learning. Further research is needed to understand cortical activity differences with tDCS bihemispheric, sham stimulation, and training effects, initial cognitive competence, motor planning, task practice, fine motor function feedback, intensity, electrode size, duration,

number of sessions, stimulation site on tDCS effects.

Data availability: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declaration by Authors

Ethical Approval: This research was reviewed and approved by NIMS Institutional Ethics Committee: Committee Review Letter no: EC/NIMS/2945/2022, 59TH ESGS No:1316/2022. Informed consent was obtained from all participants **Acknowledgement:** None

Source of Funding: None

Conflict of Interest: The authors declare no conflict of interest.

REFERENCES

- Bolon B, Garman RH, Butt MT, Dorman DC. Nervous System. *Fundam Toxicol Pathol Third Ed.* Published online 2018:625-672. doi:10.1016/B978-0-12-809841-7.00021-6
- Rostami M, Mosallanezhad Z, Ansari S, et al. The effects of consecutive sessions of anodal transcranial direct current stimulation over the primary motor cortex on hand function in healthy older adults. *Arch Gerontol Geriatr*. 2020;89:104063-104063. doi:10.1016/J.ARCHGER.2020.104063
- 3. Fauth EB, Schaefer SY, Zarit SH, Ernsth-Bravell M, Johansson B. Associations between Fine Motor Performance in Activities of Daily Living and Cognitive Ability in a Non-demented Sample of Older Adults: Implications for Geriatric Physical Rehabilitation. J Aging Health. 2017;29(7): 1144. doi:10.1177/0898264316654674
- Sanes JN, Donoghue JP, Thangaraj V, Edelman RR, Warach S. Shared neural substrates controlling hand movements in human motor cortex. *Science*. 1995;268(5218):1775-1777. doi:10.1126/SCIENCE.7792606
- Alghadir AH, Zafar H, Iqbal ZA. Can jaw position affect the fine motor activity of the hand during writing? *Brain Behav*. 2020;10(12). doi:10.1002/BRB3.1887
- Luft AR, Buitrago MM. Stages of motor skill learning. *Mol Neurobiol*. 2005;32(3):205-216. doi:10.1385/MN:32:3:205
- 7. Jang SH, Ahn SH, Byun WM, Kim CS, Lee MY, Kwon YH. The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain:

an fMRI study. *Neurosci Lett.* 2009;460(2):117-120.

doi:10.1016/J.NEULET.2009.05.037

- Gomez Palacio Schjetnan A, Faraji J, Metz GA, Tatsuno M, Luczak A. Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. *Stroke Res Treat*. 2013;2013. doi:10.1155/2013/170256
- Brunoni AR, Nitsche MA, Bolognini N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. *Brain Stimul.* 2012;5(3):175-195. doi:10.1016/J.BRS.2011.03.002
- Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. *Neurology*. 2001;57(10):1899-1901. doi:10.1212/WNL.57.10.1899
- 11. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J *Physiol.* 2000;527(3):633-639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x
- 12. Plautz EJ, Barbay S, Frost SB, et al. Postinfarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. *Neurol Res.* 2003;25(8):801-810. doi:10.1179/016164103771953880
- 13. Purdue Pegboard Test | RehabMeasures Database. Accessed October 10, 2023. https://www.sralab.org/rehabilitationmeasures/purdue-pegboard-test
- Model 32022 User's Manual O'Connor Tweezer Dexterity Test User's Manual. Published online 2011.
- 15. Stagg CJ, Bachtiar V, Johansen-Berg H. The Role of GABA in Human Motor Learning. *Curr Biol.* 2011;21(6):480. doi:10.1016/J.CUB.2011.01.069
- Schlaug G, Renga V, Nair D. Transcranial direct current stimulation in stroke recovery. *Arch Neurol.* 2008;65(12):1571-1576. doi:10.1001/ARCHNEUR.65.12.1571
- 17. Webster BR, Celnik PA, Cohen LG. Noninvasive brain stimulation in stroke rehabilitation. *NeuroRx*. 2006;3(4):474-481. doi:10.1016/J.NURX.2006.07.008
- 18. Been G, Ngo TT, Miller SM, Fitzgerald PB. The use of tDCS and CVS as methods of noninvasive brain stimulation. *Brain Res Rev.*

2007;56(2):346-361.

doi:10.1016/J.BRAINRESREV.2007.08.001

- An TG, Kim SH, Kim KU. Effect of transcranial direct current stimulation of stroke patients ondepression and quality of life. *J Phys Ther Sci.* 2017;29(3):505. doi:10.1589/JPTS.29.505
- Halakoo S, Ehsani F, Hosnian M, Zoghi M, Jaberzadeh S. The comparative effects of unilateral and bilateral transcranial direct current stimulation on motor learning and motor performance: A systematic review of literature and meta-analysis. *J Clin Neurosci*. 2020;72:8-14.

doi:10.1016/J.JOCN.2019.12.022

- Medeiros LF, de Souza ICC, Vidor LP, et al. Neurobiological effects of transcranial direct current stimulation: a review. *Front psychiatry*. 2012;3(DEC). doi:10.3389/FPSYT.2012.00110
- Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. *Neuroreport*. 1998;9(10):2257-2260. doi:10.1097/00001756-199807130-00020
- Ziemann U, Tergau F, Wassermann EM, Wischer S, Hildebrandt J, Paulus W. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. J *Physiol.* 1998;511(Pt 1):181. doi:10.1111/J.1469-7793.1998.181BI.X
- Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNFdependent synaptic plasticity: potential implications for motor learning. *Neuron*. 2010;66(2):198-204. doi:10.1016/J.NEURON.2010.03.035
- Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. *Curr Opin Neurobiol*. 2005;15(2):161-167. doi:10.1016/J.CONB.2005.03.004

How to cite this article: Naveen Kumar Balne, Bestha Vinitha, S. Afshan Jabeen, Lakshmana Prasad G, Sireesha Yareeda. Effect of transcranial direct current bi-hemispheric stimulation on fine motor activity of the hand in healthy adults. *Gal Int J Health Sci Res.* 2023; 8(4): 91-96. *DOI:* 10.52403/gijhsr.20230412
